

SHAPE AND SPACE

SECTION 1 Line symmetry and reflection

SECTION 2 Measuring angles

SECTION 3 Naming and estimating angles

SECTION 4 Drawing angles

SECTION 5 Calculations involving angles

SUGGESTED TIME

TEACHING OBJECTIVES

- Recognise reflective symmetry and reflect shapes in a mirror line.
- Measure and draw lines to the nearest millimetre.
- Recognise directions, and perpendicular and parallel lines.
- Understand and use degrees.
- Use a protractor to measure and draw acute and obtuse angles to nearest 1°.
- Calculate angles on a straight line.
- Identify, estimate and order acute and obtuse angles.
- Make patterns from rotating shapes.
- Recognise and explain patterns and relationships, generalise and predict.

SECTION 1 Line symmetry and reflection

SECTION 2 Measuring angles

SECTION 3 Naming and estimating angles

SECTION 4 Drawing angles

SECTION 5 Calculations involving angles

HOMEWORK

- Section 1, Star Challenges 1 and 2 on symmetry.
- Section 3, Star Challenge 5 is designed to reinforce mathematical language.
- Consolidate the use of a protractor to measure and draw angles.

Checklist for pupils

Line symmetry and reflection

You will:

- recognise reflective symmetry
- reflect shapes in a mirror line

Measuring angles

You will:

- use a protractor to measure angles to the nearest degree

Naming and estimating angles

You will:

- classify angles according to type and size
- estimate the size of angles

Drawing angles

You will:

- draw angles to the nearest degree
- draw and measure lines to the nearest millimetre

Calculations involving angles

You will:

- use the fact that angles on a straight line add up to 180°
- work out the size of unknown angles without using a protractor

SECTION 1: LINE SYMMETRY

AND REFLECTION

DIRECT TEACHING POINTS

- Provide opportunities for practical work to reinforce this learning.
- Illustrate line symmetry in a variety of contexts and check pupils' understanding. It is important to demonstrate examples where the line of symmetry is not parallel to the edge of the page - exercise 3.
- Star Challenges 1 and 2 illustrate the level of difficulty required at Level 4.

mirror line line symmetry reflect reflection

Line symmetry and reflection

Finding lines of symmetry
Mirror

Lines of symmetry are also called mirror lines.
They are usually drawn like this \qquad

1 Draw in ONE line of symmetry on each shape below:

2 Draw in ALL lines of symmetry on the shapes below:

3 Draw in any lines of symmetry in these road signs:

4 Regular polygons

A square has 4 lines of symmetry Draw them.

A regular hexagon has 6 lines of symmetry Draw them.

A regular octagon has 8 lines of symmetry

Draw them.

Mirror images

1 This picture shows half a shape. Draw in the reflected shape, then check it with your mirror.

2 Two mirror lines
Reflect the shape in mirror line 1. Put your mirror on mirror line 2.
Draw in their reflected shape.
mirror line 1

3
Make symmetric shapes

Mirror
Mirror

Reflect each shading in the mirror line to make symmetric shapes:

SECTIONS 2, 3 AND 4:

MEASURING ANGLES
 NAMING AND ESTIMATING ANGLES DRAWING ANGLES

DIRECT TEACHING POINTS

- Consolidate measuring length (from Unit 2) before going on to measure angles.
- Clarify the meaning of angle as 'a measure of turn' and correct any misconceptions about its size being related to the length of the arms.
- Use an OHP to demonstrate the use of a protractor. Emphasise the correct use of the scale. Provide opportunities for pupils to use protractors with increasing accuracy.

Measure this angle.

I put the protractor like this.

What did I do wrong?

- Teach the classification of angles and the use of correct vocabulary. Exercise 1 provides practice.

A right angle $=90^{\circ}$

An acute angle is less than 90°

An obtuse angle
is between 90° and 180°

A reflex angle is
bigger than 180°

- Model how to estimate the size of an angle using 'benchmarks' such as $90^{\circ}, 180^{\circ}$, and 45°. Exercise 2 and Star Challenge 4 provide examples for discussion. Pupils need immediate feedback on their estimates in order to improve this important skill.
- Demonstrate the construction of triangles as in Section 4 exercise 1 .

This is a sketch of a triangle. It is not drawn accurately. You are going to draw the triangle accurately

Start with the line $B C$, which is 10 cm long. Draw angle B, which is 40°, then angle C, which is 35°. Extend the lines made by these angles so they cross. This is point A.

- Star Challenge 7 is quite demanding. You may need to consolidate basic ideas with some pupils.
construct accurately straight line right angle degree acute angle obtuse angle reflex angle perpendicular parallel parallelogram angle fullturn halfturn quarter turn protractor

Measuring angles

1 Measuring angles accurately
(a) Measure each angle as accurately as you can.

Write the answer next to the .

5

7

(b) Now measure each angle X as accurately as you can.

Write the answer next to the

```
K.
```


Measuring angles

1 Measure each of the angles 0 .

```
10 marks }3\mathrm{ stars
7-9 marks 2 stars
5-6 marks 1 star
```


2 Measure all three marked angles:
(c) (1 mark)

(3 marks)

(a) the angle between the ladder and the ground.
(b) the angle between the ladder and the wall.
(c) the angle between the man's leg and the ladder.
(d) the angle between the top of the man's arm and the ladder.

Naming and estimating angles

1 Types of angle

Is each marked angle acute, obtuse, reflex or a right-angle?

12
$\bullet=200^{\circ}$
This angle is
$\ldots \ldots \ldots ~$

Naming and estimating

 angles
2
 Estimating angles

Estimate the size of each angle marked with a \bullet.

Naming and estimating

 anglesEstimate the size of each angle:

Illustrate some mathematical words by writing them as the shape they describe.

Example

Try to do the same with these words:

OBTUSE	PARALLEL LINES	HALF TURN
FULL TURN	PERPENDICULAR	RIGHT ANGLE
PARALLELOGRAMS	TRIANGLE	REFLEX

Constructing accurate

1 triangles

1 This is a sketch of a triangle. It is not drawn accurately. You are going to draw the triangle accurately.
Start with the line $B C$, which is 10 cm long. Draw angle B, which is 40°, then angle C, which is 35°. Extend the lines made by these angles so they cross. This is point A.

B

Now measure the lengths of the lines $A B$ and $A C$ to the nearest 0.1 cm .
$A B=$ $\mathrm{cm} \quad \mathrm{AC}=$ cm

2 Use the same method to draw triangle PQR accurately on the base line $P Q$ below. Measure the other two sides of the triangle.

$P R=$ \qquad cm
$\mathrm{QR}=$ cm

Drawing angles

Rotating patterns

Rifat made this rotating pattern.

She started with this flag.

She drew a line at 45° to the stick of the flag to get this:

She then repeated the process.
Each flag is at 45° to the previous flag.

Copy this pattern in exactly the same way. Make sure your angles are exactly 45°.

2 Make another rotating pattern with the same flag. This time rotate the flag through 60°.

Drawing angles

More triangles

1 Draw this diagram accurately. Measure the length of $B C$.

12-13 marks 2 stars 9-11 marks 1 star

NOT DRAWN TO SCALE

2 Draw this diagram accurately. Measure the length of PR.

3 Draw this diagram accurately. Measure the lengths of LM and MN.

3 marks for each drawing. 1 mark for each measurement.

SECTION 5: CALCULATIONS INVOLVING ANGLES

DIRECT TEACHING POINTS

- Take opportunities to practise relevant mental calculation skills, for example complements of 90 and 180.
- Make sure that pupils know and can use the fact that angles on a straight line add up to 180°.
- Emphasise the difference between 'calculate' and 'measure'.

parallel perpendicular straight line right angle

Calculations involving angles

1 Angles on a straight line

Angles on a straight line add up to 180°.

Calculate each? angle. Do not use a protractor.

1

2

3

5

6

7

\qquad 8

Calculations involving angles

This symbol means a right angle.

The angle is 90°.
Remember that angles on a straight line add up to 180°

Work out each of the angles:

1

$a=$

2

$$
b=
$$

3

4

5

$f=$ $\ldots \ldots \ldots$ g $=$

6

$\mathrm{h}=$

7

$\mathrm{k}=\ldots \ldots \ldots \quad \mathrm{m}=$

Calculations involving angles

What's the angle?

Calculate each angle:

1

$$
\mathrm{g}=\ldots \ldots \ldots \quad \mathrm{h}=
$$

6

$\mathrm{b}=$
3

$c=$ \qquad

$$
d=
$$

$$
i=
$$

$$
\mathrm{j}=
$$

4

$$
\mathrm{e}=
$$

5

$\mathrm{k}=$ \qquad

$$
\mathrm{m}=
$$

\qquad

$$
=\ldots \ldots \ldots . .
$$

$$
f=
$$

Section 1

Line symmetry and reflection

1 Finding lines of symmetry

3

4

Mirror images

1 mirror line or axis of symmetry

mirror line 1
mirror line 2

Make symmetric shapes

Unit 14 Answers

Section 2

Measuring angles
1 Measuring angles accurately
(a) 148°
345°
564°
730°
225°
445°
690°
(b)
170°
3135°
555°
7150°
2155°
490°
645°

Section 3

Naming and estimating angles
1 Types of angle

1 obtuse	4 right	7 reflex	10 obtuse
2 right	5 acute	8 right	11 right
3 acute	6 obtuse	9 acute	12 reflex

2 Estimating angles
1 accept $5^{\circ}-25^{\circ} 5$ accept $130^{\circ}-170^{\circ} 9$ accept $20^{\circ}-40^{\circ}$
2 accept $15^{\circ}-35^{\circ} 6$ accept $70^{\circ}-85^{\circ} 10$ accept $95^{\circ}-110^{\circ}$
3 accept $100^{\circ}-120^{\circ} 7$ accept $80^{\circ}-88^{\circ} 11$ accept $50^{\circ}-75^{\circ}$
4 accept $85^{\circ}-90^{\circ} 8$ accept $120^{\circ}-160^{\circ} 12$ accept $110^{\circ}-140^{\circ}$

Section 4

Drawing angles

1 Constructing accurate triangles
$1 \mathrm{AB}=5.9$ or 6.0 cm
$\mathrm{AC}=6.6$ or 6.7 cm
$2 \mathrm{PR}=6.4$ or 6.5 cm
$\mathrm{QR}=5.5$ or 5.6 cm

Section 5

Calculations involving angles

1. Angles on a straight line
180°
(3 110°
540°
$7 \quad 10^{\circ}$
2150°
4120°
6135°
$8 \quad 130^{\circ}$

2 Working with right angles
$1 \mathrm{a}=90^{\circ} 4 \mathrm{~d}=90^{\circ} \mathrm{e}=20^{\circ} \quad 7 \mathrm{i}=105^{\circ} \mathrm{j}=90^{\circ}$
$2 \mathrm{~b}=60^{\circ} \mathrm{f} \mathrm{f}=90^{\circ} \mathrm{g}=124^{\circ} 8 \mathrm{k}=55^{\circ} \mathrm{m}=145^{\circ}$
$3 \mathrm{c}=75^{\circ} 6 \mathrm{~h}=30^{\circ}$

Unit 14 Answers

Unit 14 Answers

5 Mathematical word shapes
(Suggested shapes; others are possible)

6 Rotating patterns

Check all angles are 45°

Both patterns accurately drawn 1 star
2

Check all angles are 60°

More triangles

```
12-13 marks 2 stars
9-11 marks 1 star
```

$1 \mathrm{BC}=7.7 \mathrm{~cm}$. So, if $\mathrm{BC}=7.6-7.8 \mathrm{~cm}$, the diagram is likely to be fairly accurate.
$2 \mathrm{PR}=11.3 \mathrm{~cm}$. So, if $\mathrm{PR}=11.2-11.4 \mathrm{~cm}$,
the diagram is likely to be fairly accurate.
$3 \mathrm{MN}=4.5 \mathrm{~cm}$ and $\mathrm{LM}=11 \mathrm{~cm}$. So, if $\mathrm{MN}=4.4-4.6 \mathrm{~cm}$ and LM $=10.9-11.1 \mathrm{~cm}$, the diagram is likely to be fairly accurate.

8 What's the angle?

12-13 correct 2 stars 10-11 correct 1 star
$1 \mathrm{a}=105^{\circ}$
$5 \mathrm{~g}=60^{\circ} \mathrm{h}=140^{\circ}$
$2 \mathrm{~b}=30^{\circ}$
$6 i=147^{\circ} \quad j=98^{\circ}$
$3 \mathrm{c}=70^{\circ} \mathrm{d}=160^{\circ}$
$7 \mathrm{k}=45^{\circ} \mathrm{m}=65^{\circ} \mathrm{n}=110^{\circ}$
$4 \mathrm{e}=50^{\circ} \mathrm{f}=130^{\circ}$

