1 of 2 The National Strategies | Primary
Overcoming barriers in mathematics - helping children move from level 1 to level 2

Can I partition one- and two-digit numbers in different ways?

Teaching guidance

Key vocabulary
number, tens, units, ones, digit, value, partition, split, recombine, place value, one-digit number, two-digit number

Models and images, resources and equipment

Use practical equipment to partition tens and ones in different ways
$41 p$ could be made from $10 p+10 p+10 p+10 p+1 p$

or lots of other ways with 20 p, 10 p and Ip coins.

Teaching tips

- Provide children with practical experience of partitioning a small number of objects into two groups, for example by:
o creating all the possible dominoes with 7 spots;
o putting out 8 biscuits onto 2 plates;
o making two jumps to land on 9 on a number line.
- Model the different ways in which a partitioned number can be recorded, for example:
$8=5+3$
$8=3+5$
$5+3=8$
$3+5=8$
- Use equipment that helps children to 'see' that numbers can be partitioned in many different ways, for example:
o Use a 100-bead string to partition number 46 into tens and ones in different ways. Model how these can be recorded as number sentences, for example: $46=40+6$ $46=30+16$ $46=20+26$ $46=10+36$;
o Use bundles of 10 straws and single straws to help children see a number such as 35 as:

- Explore with children how to use partitioning of a one-digit number and knowledge of number facts to 10 to add and subtract numbers that cross the tens boundary. Ask questions such as:
o What is $37+8$? What number facts might you use to help you work this out? How many do you need to add to 37 to get to the next multiple of 10 ? How might you partition 8 to help you? How could you show that on a bead string or number line?
- Understanding of partitioning numbers in different ways (e.g. partitioning 74 into $70+4$ or $60+14$) supports children's understanding of future calculation methods, for example decomposition

$$
\begin{array}{rrr}
70+4 \\
-20+7 \\
\hline
\end{array} \quad \begin{array}{r}
70+{ }^{64} \\
\hline
\end{array} \quad \begin{array}{r}
20+7 \\
40+7
\end{array} \quad-\frac{14}{47}
$$

and informal methods of division using partitioning.

84

