
PROBABILITY
SECTION 1 How likely?
SECTION 2 Measuring probability
SECTION 3 Working out probabilities

TEACHING OBJECTIVES

- Discuss chance or likelihood.
- Use vocabulary and ideas of probability drawing on experience.
- Calculate simple probabilities.
- Understand and use the probability scale from 0 to 1 .

SECTION 1 How likely?

SECTION 2 Measuring probability

SECTION 3 Working out probabilities

HOMEWORK

- Use the Star Challenges.
- You may want to take the opportunity to set a revision exercise on a topic covered earlier in the term, for example, fractions, that supports the work on probability.
$\frac{\text { PAGE }}{248}$

How likely?

You will:

- decide whether events are certain, uncertain or impossible

Measuring probability

You will:

- use the probability scale of 0 to 1

Working out probabilities

You will:

- work out probabilities of events

SECTIONS 1, 2 AND 3:

HOW LIKELY?

MEASURING PROBABILITIES WORKING OUT PROBABILITIES

DIRECT TEACHING POINTS

- Discuss ideas of chance and the associated vocabulary. Exercise 1, with pupils working in groups, is a possible follow-up activity.
- Explain and give examples of equally likely events. Emphasise that 'equally likely' and 'evens' do not mean the same.
- Pupils need to move from intuitive ideas about probability, exercise 1 in Section 1, to the calculation of simple probabilities.
- The examples in Sections 2 and 3 involve the calculation of probabilities. These are typically Level 5 activities but are accessible to many pupils.
- Explain notation for example, prob (6) or p(6).

probability chance likely unlikely
likelihood certain uncertain impossible
equally likely fair outcome

How likely?

1
 Certain, uncertain or impossible

Instructions to teacher

Preparation

- Photocopy and cut out the event cards on the next page. Make enough copies for each group in the class to have a complete set.

In class

- Make sure everyone in the class understands the meanings of the words certain, uncertain and impossible.
- Divide the class up into groups of about six students. Give each group a set of the event cards.
- Each group is to discuss each event shown on the cards, and decide, as a group, whether each event is certain, uncertain or impossible. They should put the event cards into three piles:

certain	uncertain	impossible

- Finally, lead a class discussion on which events have been put into each pile.

How likely?

Certain, uncertain or
1
impossible continued

Event cards

I will go shopping this week.	I will eat some toast tomorrow.	Teacher will give me a sweet in the next five minutes.
I will eat something tomorrow.	The day after Sunday will be Monday	I will go swimming in the next four weeks.
Liverpool F.C. will play Manchester United next year.	Teacher will be eaten by a tiger tomorrow.	I will smile at the next teacher I see.
I will not say a word in the next ten minutes.	I will walk barefoot to school tomorrow.	The headteacher will come to school dressed as a gorilla.
The local football team will play Manchester United.	I will have a birthday next year.	I will trip over next week.
I will get out of bed tomorrow.	I will be nice to my brother today.	The sun will rise tomorrow.
I will go to school next year.	Teacher will set us homework tonight.	Liverpool F.C. will beat Manchester United next year.
Next week will be eight days long.	I will be older tomorrow than I am today.	I will buy some sweets tomorrow.
It will rain today.	I will wear green socks tomorrow.	Teacher will win the lottery this week.

How likely?

1 Fair game?

A teacher plays a game with a class.
Some green and blue counters are put into a bag.
One counter is taken out at random (without looking).
If a blue counter is drawn, team B get a point.
If a green counter is drawn, team G get a point.
The teacher plays the game with three different bags of counters.

1 Which game is team G certain to win?
2 Which game is team B most likely to win?
3 Which game is team G least likely to win?
4 Which game is it impossible for team B to win?

5 For which game is it equally likely that team B or team G win?

6 Are all these games fair?

How likely?

Order of likelihood

Badges are being sold at a Chester Jets v Manchester Giants basketball match.

```
All correct 1 star
```


1 Which badge are you most likely to see first?
2 Which badge are you least likely to see first?
3 Put the badges into order. Most likely to see

Least likely to see

4 Put these events into the order of likelihood.
Put the most likely first.
A: Someone in my class will become a millionaire one day.
B: The school will be closed on Christmas day.
C: Someone in my class will have fish and chips tonight.
D: A chimpanzee will become the next Prime Minister.

Measuring probability

1 The probability scale

The probability of an event describes how likely the event is. Probability is given as a number between 0 and 1.

How likely \rightarrow Impossible | Evens |
| :---: |
| Probability \rightarrow Certain |

1 There are 3 sweets on this dish.

2 toffees
1 mint

Shafiq is given one of these sweets.

Put these labels into the correct boxes on the probability line:

Put these labels into the correct boxes on the probability line:

| prob(toffee, fruit |
| :---: | :---: | :---: | :---: | :---: |
| drop or mint) | prob(fruit drop)

Measuring probability

2 Balloons

1 There are four balloons in this bunch. Two are red and two are blue.

Put these labels into the correct boxes:
 prob(red)
prob(red or blue)

2 There are eight balloons in this bunch.
Four are red, two are white and two are green.

Put these labels into the correct boxes:
 prob(white)

310 balloons: 5 blue (B)
2 red (R)
3 green (G)

416 balloons:
8 red (R)
Put the labels into the correct boxes:

Put the labels into the correct boxes:

4 green (G)
2 blue (B)
2 white (W)

Measuring probability

Olwen has been eating fruit drops.

All correct 1 star

She has these fruit drops left:
$\mathrm{O}=$ orange
L = lemon
C = cherry

She puts them back in the packet.
Later, she tips just one out.

1 Which flavour is she most likely to get?
2 Which flavour is she least likely to get?
3 Put the probabilities of orange $p(0)$, lemon $p(L)$, cherry $p(C)$ into the unshaded boxes.

4 What would go in the shaded box?

Working out probabilities

1 Simple probabilities

Imagine that a few black and white counters are placed in different bags. One counter is picked out at random (without looking) from each bag.

Example 1

The probability of getting a black counter is 1.
We write this as
 prob(black) $=1$

The probability of getting a white counter is 0 .
or prob(white) $=0$

Example 2

The chance of getting a white counter is 1 out of 3 or $\operatorname{prob}($ white $)=\frac{1}{3}$

The chance of getting a black counter is 2 out of 3

$$
\text { or prob(black) }=\frac{2}{3}
$$

Fill in the gaps:
$1 \operatorname{prob}($ white $)=$
prob(black) $=$

$2 \operatorname{prob}($ white $)=$ prob(black) $=$

$3 \operatorname{prob}(w h i t e)=$
prob(black) $=$

$5 \operatorname{prob}($ white $)=$
prob(black) $=$

$4 \operatorname{prob}($ white $)=$
prob(black) $=$

prob(white) $=$
prob(black) $=$

Working out probabilities

1

prob(white) $=$
prob(black) =

2

prob(white) $=$
prob(black) = \qquad

3
prob(white) $=$
prob(black) = \qquad

4

prob(white) =
prob(black) = \qquad

6

$$
\mathrm{pr}
$$

prob(white) $=$
prob(black) =
prob(silver) =

8
prob(white) $=\ldots \ldots \ldots$
prob(black) =
prob(silver) =

Working out probabilities

Example

 The letters which make up the word```
All correct 1 star
```

$\mathbf{S}$ C $\quad \mathbf{H} \quad \mathbf{O} \quad \mathbf{O} \quad \mathbf{L}$ are placed in a bag.
What is the chance that the letter $L$ will be picked out?

$$
\operatorname{prob}(\mathrm{L})=\frac{1}{6} \quad \operatorname{prob}(0)=\frac{2}{6}
$$

| 1 | $\mathbf{M}$ | $\mathbf{A}$ | $\mathbf{T}$ | $\mathbf{H}$ | $\mathbf{S}$ | are in the bag. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\operatorname{prob}(M)=\ldots \ldots \ldots \operatorname{prob}(A)=\ldots \ldots \ldots \operatorname{prob}(H)=$


| 2 | $\mathbf{M}$ | $\mathbf{A}$ | $\mathbf{D}$ | $\mathbf{N}$ | $\mathbf{E}$ | $\mathbf{S}$ | $\mathbf{S}$ | are in the bag. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\operatorname{prob}(\mathrm{A})=\ldots \ldots \ldots . \operatorname{prob}(M)=\ldots \ldots \ldots . \operatorname{prob}(\mathrm{S})=$


| 3 | $\mathbf{P}$ | $\mathbf{R}$ | $\mathbf{O}$ | $\mathbf{B}$ | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{I}$ | $\mathbf{L}$ | $\mathbf{I}$ | $\mathbf{T}$ | $\mathbf{Y}$ | are in the bag. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\operatorname{prob}(A)=\ldots \ldots \ldots \operatorname{prob}(O)=\ldots \ldots \ldots . \operatorname{prob}(B)=$


| 4 | $\mathbf{E}$ | $\mathbf{L}$ | $\mathbf{E}$ | $\mathbf{P}$ | $\mathbf{H}$ | $\mathbf{A}$ | $\mathbf{N}$ | $\mathbf{T}$ | $\mathbf{S}$ | are in the bag. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\operatorname{prob}(A)=\ldots \ldots \ldots \cdot \operatorname{prob}(E)=\ldots \ldots \ldots \cdot \operatorname{prob}(T)=$



Probabilities with one dice

## Example



One dice is rolled.
The possible outcomes are
123456
The chance of getting 5 .
$\operatorname{Prob}(5)=\frac{1}{6}$
The chance of getting 4 or 5 . $\operatorname{Prob}(4$ or 5$)=\frac{2}{6}$

1 What is the probability of getting a 2?
2 What is the probability of getting a 3?
3 Prob(an even score) $=$
$4 \operatorname{Prob}(3$ or 4$)=$
5 Prob(a score less than 4) =
$6 \operatorname{Prob}($ a score more than 4$)=$
$7 \operatorname{Prob}(7)=$

## Working out probabilities

1 This table shows the sum of the scores when two dice are thrown.

It is not complete.
Complete the table of outcomes.


2 How many outcomes are there altogether?
(They are not all different.)
$\operatorname{Prob}(12)=\frac{1}{36} \quad \operatorname{Prob}(11)=\frac{2}{36} \quad \operatorname{Prob}(11$ or 12$)=\frac{3}{36}$

| 3 | prob(2) | $=$ | 8 | prob(3, 4 or 5) | $=$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | prob(5) | $=$ | 9 | prob(7) | $=$ |
| 5 | prob(5 or less) | $=$ | 10 | prob(10 or more) | $=$ |
| 6 | prob(3) | = | 11 | prob(multiple of 5) | $=$ |
| 7 | prob(10) | $=$ |  |  |  |

## Unit 7 Answers

## Section 1

How likely?
1 Certain, uncertain or impossible
The children decide together which event should go in each pile.

## Section 2

Measuring probability
1 The probability scale


2 Balloons

| 1 | prob (white) | $\begin{aligned} & \hline \text { prob } \\ & \text { (red) } \end{aligned}$ | $\begin{array}{r} \text { prob } \\ \text { (red or bl } \end{array}$ |  | prob (blue) | $\begin{gathered} \text { prob } \\ \text { (white) } \end{gathered}$ | prob <br> (red) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | prob <br> (R) | prob <br> (G) | prob <br> (B) | $\begin{gathered} \text { prob } \\ (R, G \text { or } B) \end{gathered}$ |  |  |  |
| 4 | $\begin{aligned} & \hline \hline \text { prob } \\ & \text { (pink) } \end{aligned}$ | $\begin{gathered} \hline \text { prob } \\ \text { (W) } \end{gathered}$ | prob <br> (G) | $\begin{gathered} \hline \text { prob } \\ \text { (R) } \end{gathered}$ | $\begin{array}{r} \text { prol } \\ \left(\mathrm{R}, \mathrm{G} \mathrm{O}^{\prime}\right. \end{array}$ |  |  |

Working out probabilities
1 Simple probabilities
$1 \operatorname{prob}($ white $)=$ prob(black) $=\frac{3}{4}$
$2 \operatorname{prob}($ white $)=\frac{1}{5}$
prob(black) $=\frac{4}{5}$

3 prob(white) $=\frac{2}{5}$
$\operatorname{prob}($ black $)=\frac{3}{5}$
$4 \operatorname{prob}($ white $)=\frac{2}{6}$
prob(black) $=\frac{4}{6}$

5 prob(white) $=0$
prob(black) $=1$
$6 \operatorname{prob}($ white $)=\frac{2}{7}$
prob(black) $=\frac{5}{7}$

2 More probabilities
$1 \operatorname{prob}($ white $)=\frac{2}{5}$
prob(black) $=\frac{3}{5}$
$2 \operatorname{prob}($ white $)=\frac{2}{6}$
$\operatorname{prob}($ black $)=\frac{4}{6}$
$3 \operatorname{prob}($ white $)=0$
prob(black) $=1$

4
$\operatorname{prob}($ white $)=\frac{2}{7}$
$\operatorname{prob}($ black $)=\frac{5}{7}$
$5 \operatorname{prob}($ white $)=\frac{1}{5}$
prob(black) $=\frac{3}{5}$
prob(silver) $=\frac{1}{5}$
$\operatorname{prob}($ white $)=\frac{1}{7}$
prob(black) $=\frac{4}{7}$
prob(silver) $=\frac{2}{7}$
$7 \operatorname{prob}($ white $)=\frac{2}{7}$
prob(black) $=\frac{3}{7}$
prob(silver) $=\frac{2}{7}$
$8 \operatorname{prob}($ white $)=\frac{2}{9}$
prob(black) $=\frac{4}{9}$
prob(silver) $=\frac{3}{9}$

## Star Challenge answers



Fair game?
All correct 1 star
1 Game 3
2 Game 2
3 Game 2
4 Game 3
5 Game 1
6 No

Order of likelihood
All correct 1 star
1 Jets are the best
3 Jets are the best Manchester Giants Chester Jets
I love basketball
4 B, C, A, D


| Fruit drops <br> 1 | Orange | 3 |
| :--- | :--- | :--- |
| 2 | Lemon | 4 |


Random letters $\quad$ All correct 1 star

| 1 | $\operatorname{prob}(\mathrm{M})=\frac{1}{5}$ | $\operatorname{prob}(\mathrm{~A})=\frac{1}{5}$ |
| :--- | :--- | :--- |
| $2 \operatorname{prob}(\mathrm{~A})=\frac{1}{7}$ | $\operatorname{prob}(\mathrm{M})=\frac{1}{7}$ | $\operatorname{prob}(\mathrm{~S})=\frac{1}{5}$ |
| $3 \operatorname{prob}(\mathrm{~A})=\frac{1}{71}$ | $\operatorname{prob}(\mathrm{O})=\frac{1}{11}$ | $\operatorname{prob}(\mathrm{~B})=\frac{2}{11}$ |
| $4 \operatorname{prob}(\mathrm{~A})=\frac{1}{9}$ | $\operatorname{prob}(\mathrm{E})=\frac{2}{9}$ | $\operatorname{prob}(\mathrm{~T})=\frac{1}{9}$ |



Probabilities with one dice

All correct 1 star
70
$6 \frac{2}{6}$
$5 \quad \frac{3}{6}$


$1 \frac{1}{6}$
$3 \frac{3}{6}$
$2 \frac{1}{6}$
$4 \quad \frac{2}{6}$

| 10-11 correct 2 stars |  |
| :--- | :--- |
| $8-9$ correct | 1 star |



